

Co-funded by the Erasmus+ Programme of the European Union

AM Polymer Materials and Properties

Tuesday 1st June 2021

Got a question ? Please use the "chat" or "raise your hand" functions

- This pilot course is organised under the scope of the Sector Skills Strategy in Additive Manufacturing (SAM) Project
- Running from 1st Jan 2019 31st Dec 2022
- European-wide consortium with 17 partners comprising:
 - Industries
 - Education and Training Providers

- Some objectives of the SAM Project
 - Assess and anticipate skills (gaps and shortages) in AM
 - Develop an International AM Qualification System (IAMQS)
 - Raise awareness of AM and increase the attractiveness of the sector to young people
 - Train and track students, trainees and job seekers in AM

• Sector Skills Strategy in Additive Manufacturing (SAM) Project

Twitter: https://twitter.com/skills4am

YouTube: https://www.youtube.com/channel/UCO-PfDXv5ReiELtkvyVbtHA

Website: http://www.skills4am.eu/

Facebook:<u>https://www.facebook.com/SectorSk</u> illsStrategyinAdditiveManufacturing/

Linked in

• Sector Skills Strategy in Additive Manufacturing (SAM) Project

SAM general group on LinkedIn: https://www.linkedin.com/groups/12231279/

Students, Trainees & Jobseekers in AM <u>https://www.linkedin.com/groups/8918566/</u>

MATERIALS

Co-funded by the Erasmus+ Programme of the European Union

Meet your lecturers

Dr Adeayo Sotayo

- BEng Mechanical Engineering, University of Liverpool, UK
- PhD Engineering, Lancaster University, UK
- Research Fellow and Associate Lecturer, University of Liverpool, UK
- > Research Fellow and Chartered Engineer, Brunel University, UK

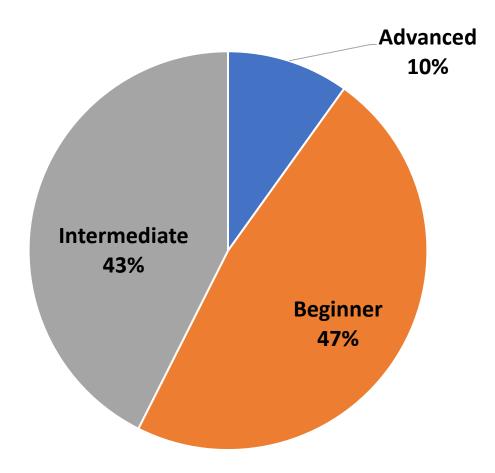
MATERIALS

Co-funded by the Erasmus+ Programme of the European Union

Meet your lecturers

Dr Claes Fredriksson

- > MSc and PhD in Physics at Linköping University, Sweden
- > About 20 years teaching experience in materials (e.g. metals, polymers)


and sustainability, around the world

- > Associate Professor of Materials Science
- Lead Education Development Manager, Ansys Materials

Business Unit, UK

Participants' knowledge of Materials

Quiz time – What are you hoping to get out of this course?

Website – <u>Vevox.app</u>

MATERIALS

Co-funded by the Erasmus+ Programme of the European Union

Learning Outcomes

- 1. List different polymers used in AM
- 2. Explain different AM processes used for polymer materials
- 3. Describe the properties (e.g., mechanical properties) of AM polymers
- 4. Explain the effect of processing and environmental conditions (e.g., temperature) on AM polymers
- 5. Identify different applications of AM polymers (e.g., Automotive, Aerospace, Biomedical etc.)

MATERIALS

Teaching structure

Week	Торіс	Lecturer
1A	Introduction to Polymer Materials in	AS and
Tuesday 1 st June 2021 2hr lecture (10am – 12pm BST)	AM – Examples and Properties	CF
1B	Polymer Materials in AM – Case Study	AS and
Wednesday 2 nd June 2021 2hr lecture (10am – 12pm BST)		CF
2A Monday 7 th June 2021 7-minute assessment (10am – 10:30am BST)	Assessment	AS
TBC (approximately a week after)	Assessment (Resit)	AS

Assessment

At the end of the course, participants will need to complete the **assessment (7th June**

2021 – seven questions) for this course, which are based on:

- Learning outcomes
- Lecture slides
- Other teaching resources (shared).
- Participants must attend the lectures (x2), complete feedback surveys and get a minimum of 60% in the assessment to be eligible for the certificate of attendance by the SAM project.

Co-funded by the Erasmus+ Programme of the European Union

Let's get started

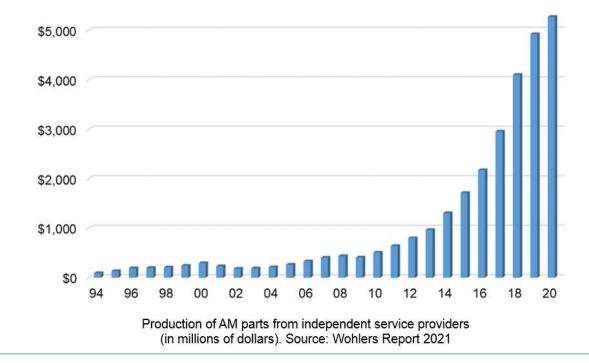
Co-funded by the Erasmus+ Programme of the European Union

Introduction to Polymer Materials in AM (Examples and Properties)

What is AM

Additive Manufacturing (also called 3D Printing)

- ✓ Design a 3D model of an object/product using a computer software
 - Free CAD examples include TinkerCAD, SketchUp
- \checkmark Builds the object by adding (not subtracting) materials layer by layer



Source: giphy.com

AM Industry

- ✓ Continuous growth
- ✓ 7.5% growth to \$12.8 billion in 2020 (despite COVID-19 Pandemic)
- ✓ Growth was down compared to average growth of **27%** in previous 10 years

Additive Manufacturing across different sectors

Construction

Source: m-tec (2020)

Food

Source: AMFG.ai (2019)

Source: Pixabay (2020)

Health & Biomedical

Source: Fabbaloo (2018)

Source: 3D Printing Media Network (2020)

Source: Shutterstock (2020)

Co-funded by the Erasmus+ Programme of the European Union

Why AM

Less waste

✤ Use the right amount of amount of material with little or no material wasted

✓ Customisation

Each design can be different, and suited to what you want

Complex geometries

✤ AM creates complex designs compared to traditional types of manufacturing

✓ Fast production

- ✤ 3D Printing can make objects within a minutes or hours (depending on the complexity)
- You need the 3D Model and a 3D Printer

Seven AM processes by ISO/ASTM 52900:2015

Material extrusion

Material jetting

Binder jetting

Directed energy deposition

Powder bed fusion

Sheet lamination

Vat photopolymerization

Underlined processes is typically

used to make AM polymers

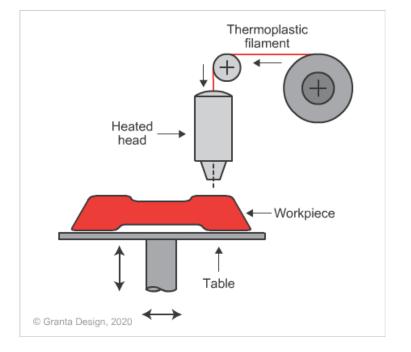
Co-funded by the Erasmus+ Programme of the European Union

Material extrusion

Material is selectively dispensed through a nozzle

Technology

- ✓ Fused Deposition Modelling (FDM)
- ✓ Fused Filament Fabrication (FFF)


Features

- ✓ Very popular
- $\checkmark\,$ Relatively cheap and economical
- Can be used at home or in the office
- ✓ Availability in multiple colours

Typical materials

✓ Thermoplastic filaments

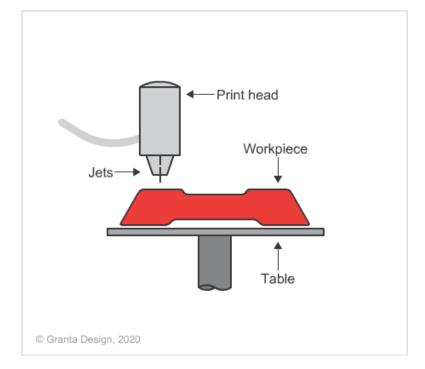
Ansys Granta https://www.grantadesign.com/education/teachingresources/ong oing-development/additive-manufacturing/

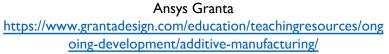
MATERIALS

Material jetting

Droplets of build material are selectively deposited

Technology


- ✓ Multi-Jet Modelling (MJM)
- ✓ Drop on Demand (DOD)


Features

- High accuracy of deposition of droplets and therefore low waste
- ✓ Multiple material parts and colours

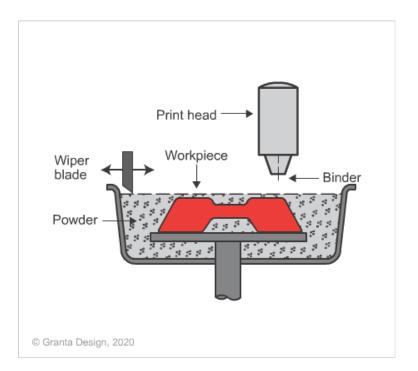
Typical materials

✓ Photopolymers, Polymers (resin), Waxes

Binder jetting

Liquid **bonding agent** is selectively deposited to join **powder** materials

Technology


- ✓ Drop on Powder (DOP)
- ✓ Powder Bed printing

Features

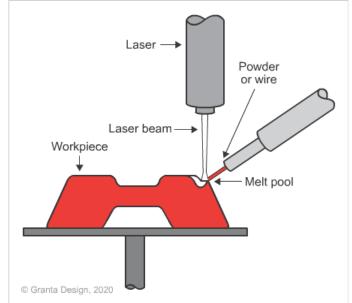
- \checkmark Wide range of materials in powder form
- ✓ Relatively fast process

Typical materials

 Polymer powder, metal powder, ceramic powder, gypsum powder, sand.

Ansys Granta https://www.grantadesign.com/education/teachingresources/ong oing-development/additive-manufacturing/

Directed energy deposition (DED)


Thermal energy (laser or electron beam) is used to fuse materials by melting as they are being deposited

Technology

- ✓ Laser Metal Deposition (LMD)
- ✓ Laser Engineered Net Shaping (LENS)
- ✓ Direct Metal Deposition (DMD)
- ✓ Electron Beam Free-Form Fabrication (EBF3)

Features

- ✓ Effective for repairs and adding features
- ✓ Limited material use

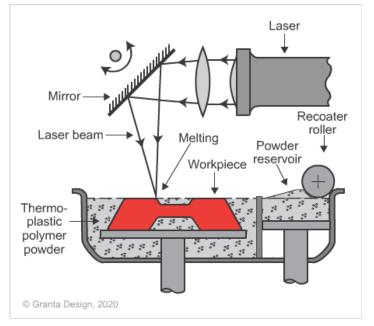
Typical materials

✓ Metal wire or powder (no polymers)

Powder bed fusion (PBF)

Thermal energy (laser or electron beam) selectively fuses regions of a powder bed

Technology


- ✓ Selective Laser Sintering (SLS)
- ✓ Selective Heat Sintering (SHS)
- ✓ Direct Metal Laser Sintering (DMLS)
- ✓ Electron Beam Melting (EBM)
- ✓ Selective Laser Melting (SLM)

Features

✓ Wide range of materials, cost-effective, powder acts as support material

Typical materials

✓ Polymer (e.g. nylon powder), metal and ceramic powder

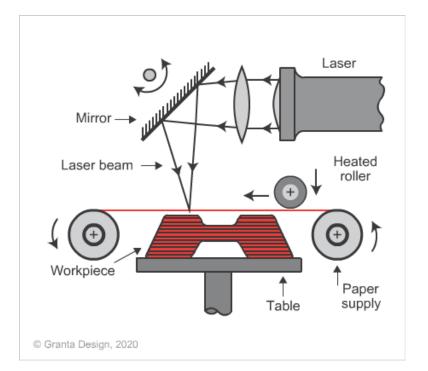
MATERIALS

Co-funded by the Erasmus+ Programme of the European Union

Sheet lamination

Sheets of material are bonded to form a part

Technology


- ✓ Selective Deposition Lamination (SDL)
- ✓ Laminated Object Manufacturing (LOM)
- ✓ Ultrasonic Additive Manufacturing (UAM))

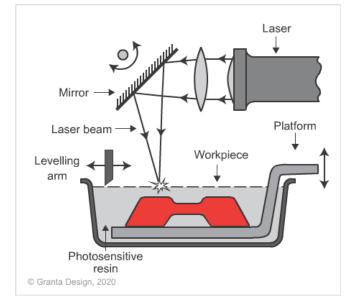
Features

 \checkmark Cost-effective and relatively fast

Typical materials

✓ Polymer sheets, metal sheets

Vat photopolymerization


Liquid photopolymer in a vat is selectively cured by light-activated polymerization

Technology

- ✓ Stereolithography (SLA)
- ✓ Digital Light Processing (DLP)
- ✓ Continuous Liquid Interphase Production (CLIP)
- ✓ Scan, Spin, and Selectively Photocure (3SP)

Features

- $\checkmark\,$ High accuracy and complexity
- $\checkmark\,$ Excellent surface finish and high resolution
- $\checkmark\,$ Relatively fast, costly and large build areas
- ✓ Lengthy post-processing time

Typical materials

✓ Photopolymer resins, acrylics

and epoxies

Co-funded by the Erasmus+ Programme of the European Union

Quiz time – Which of these AM processes entails selectively depositing droplets of the build material (e.g. polymer resin)?

Website – Vevox.app

Quiz time – Which of these AM processes provides the best surface finish?

Website – <u>Vevox.app</u>

MATERIALS

Co-funded by the Erasmus+ Programme of the European Union

Why use polymers in AM

- ✓ Low cost
- ✓ Ease of manufacture
- \checkmark Variety and versatility
- ✓ Ability to combine with fibres to form stronger composite materials
- \checkmark Availability in filament, powder and resin forms

Challenges with using polymers

- ✓ Growing environmental concern
- ✓ Most polymers are derived from non-renewable petrochemicals
- \checkmark However, polymers from renewable materials (e.g. PLA) are becoming increasingly

popular

Co-funded by the Erasmus+ Programme of the European Union


Common polymers used in AM

Acrylonitrile Butadiene Styrene (ABS)

Applications

✓ Household items, toys (e.g. LEGO), automotive components, pipe fittings, prototypes

Simplify3D (2021) - https://www.simplify3d.com/support/materials-guide/abs/

Acrylonitrile Butadiene Styrene (ABS)

Properties and AM Processing Parameters

- Available in filaments form for FDM, powder form for SLS and liquid form for SLA
- Tough material and good impact properties
- ✓ Processing temperature (230 260 °C)
- ✓ Heated platform (85 130°C) to prevent warping
- AM machine with an enclosed chamber is preferable because it emits potentially dangerous particles and unpleasant fumes

Polylactic acid or polylactide (PLA)

Applications

 $\checkmark\,$ Food packaging, decorative items, plastic bags, bottles, plastic sheets and films

3D natives (2021) https://www.3dnatives.com/en/pla-3d-printing-guide-190820194/

Simplify3D (2021) https://www.simplify3d.com/support/materials-guide/pla/

Polylactic acid or polylactide (PLA)

Properties and AM Processing Parameters

- ✓ Made from renewable sources (e.g., corn starch, maize, sugarcane)
- ✓ Biodegradable
- ✓ Simple and easy to 3D Print
- ✓ Processing temperature (190 °C 230 °C) (lower than ABS)
- ✓ No heated platform required (unlike ABS) because it doesn't warp easily.

Polyethylene terephthalate (PET)

Applications

 \checkmark Plastic bottles and packaging, electrical fittings and connectors

3D natives (2020) https://www.3dnatives.com/en/plastics-used-3d-printing110420174/#!

Simplify3D (2021) https://www.simplify3d.com/support/materials-guide/petg/

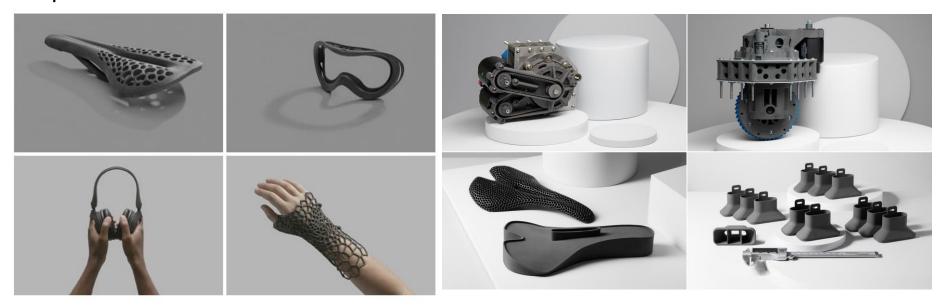
Polyethylene terephthalate (PET)

Applications

✓ Plastic bottles and packaging, electrical fittings and connectors

Properties and AM Processing Parameters

- ✓ Good impact and chemical resistance, dimensional stability
- \checkmark Other variants such as PETG (Glycol modified version of PET).
- ✓ PETG has relatively reduced brittleness and fragility and easier to 3D print
- ✓ Processing temperature (220 260 °C) and platform bed temperature (75 90°C)
- \checkmark Odourless during processing and highly recyclable



Nylon or Polyamide (PA)

Applications

✓ Functional parts, automotive and aerospace components (e.g. gears, bearings), medical prosthetic devices

Simplify3D (2021) https://www.digitaltrends.com/cool-tech/formlabs-fuse1-sls-printer-news/ with-fuse-1-sls-printer/

Co-funded by the Erasmus+ Programme of the European Union

Nylon or Polyamide (PA)

Properties and AM Processing Parameters

- \checkmark Good stability, rigidity and high impact resistance
- ✓ No unpleasant odour during manufacturing
- ✓ Processing temperature (225 265 °C) and platform bed temperature (70 90°C)
- ✓ Available in filaments form for FDM, and powder form for SLS

Polypropylene (PP)

Applications

✓ Automotive sector, pipes and fittings textiles industry, everyday products, garden

furniture, cups

Sculpteo (2021) https://www.sculpteo.com/en/3d-learning-hub/3d-printing-materials-guide/3d-printing-polypropylene/

Polypropylene (PP)

Applications

✓ Automotive sector, textiles industry, everyday products, garden furniture, cups

Properties and AM Processing Parameters

- ✓ Good impact and fatigue resistance
- Sensitive to UV rays causing it to expand and low temperature resistance (warping during cooling)
- ✓ Processing temperature (220 250 °C) and platform bed temperature (85 100°C)

Co-funded by the Erasmus+ Programme of the European Union

Polyvinyl Alcohol (PVA)

Simplify3D (2021) https://www.simplify3d.com/support/materials-guide/pva/

Applications

✓ Typically printed as a support material complex AM designs and products (e.g. overhangs)

Properties and AM Processing Parameters

- \checkmark Soft and biodegradable polymer
- ✓ Highly sensitive to moisture (dissolves in water) useful as support structure material
- ✓ Processing temperature (185 200 °C) and no heated platform required

Thermoplastic Elastomers (TPE) and Thermoplastic polyurethane (TPU)

Applications

✓ Vibration dampening, deformable products, fashion industry (e.g. shoe soles), car wheels.

All3DP (2020) https://all3dp.com/1/3d-printer-filamenttypes-3d-printing-3d-filament/

3D natives (2020) https://www.3dnatives.com/en/tpu-3dprinting-040620204/

3D natives (2020) https://www.3dnatives.com/en/tpu-3d-printing-040620204/

Thermoplastic Elastomers (TPE) and Thermoplastic polyurethane (TPU)

Properties and AM Processing Parameters

- ✓ Flexible materials, good impact resistance and excellent vibration dampening
- ✓ Difficult to 3D Print accurately
- ✓ Processing temperature (225 245 °C) and no heated platform required

High Performance Polymers

Polyether ketone ketone (PEKK), Polyether ether ketone (PEEK), Polyetherimide (PEI)

Applications

 ✓ Aerospace, automotive (e.g. engine components, electrical housing), oil and gas, and medical sectors (e.g. medical implants)

ApiumTec and 3D natives (2019) https://www.3dnatives.com/en/3d-materials-peek-ultem-170120194/#!

3D natives (2019) https://www.3dnatives.com/en/3d-materials-peek-ultem-170120194/#!

Co-funded by the Erasmus+ Programme of the European Union

High Performance Polymers

- ✓ Polyether ketone ketone (PEKK)
- ✓ Polyether ether ketone (PEEK)
- ✓ Polyetherimide (PEI)

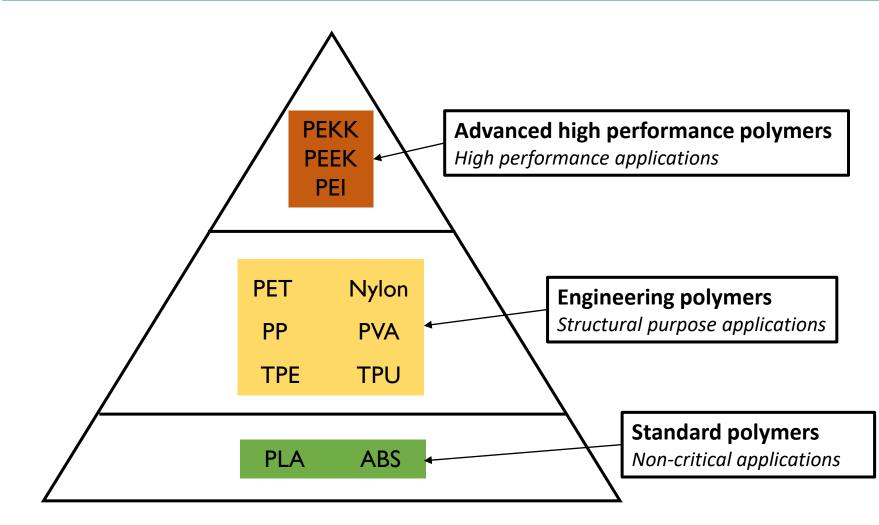
Properties and AM Processing Parameters

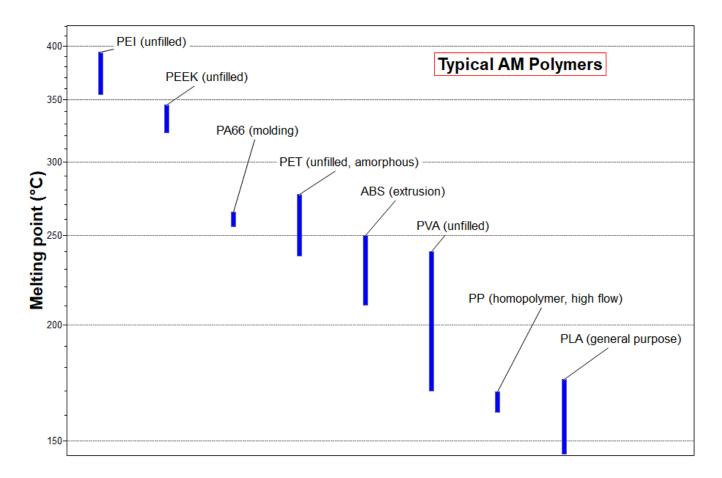
- \checkmark Excellent mechanical, chemical and thermal properties
- ✓ Typically more expensive than other polymers
- ✓ Heated platform (~ 230 °C), processing temperature (~ 350 °C) and closed chamber
- ✓ Available in filaments form for FDM, and powder form for SLS

Quiz time – Which of these Polymers is NOT typically made using Additive Manufacturing?

Website – <u>Vevox.app</u>

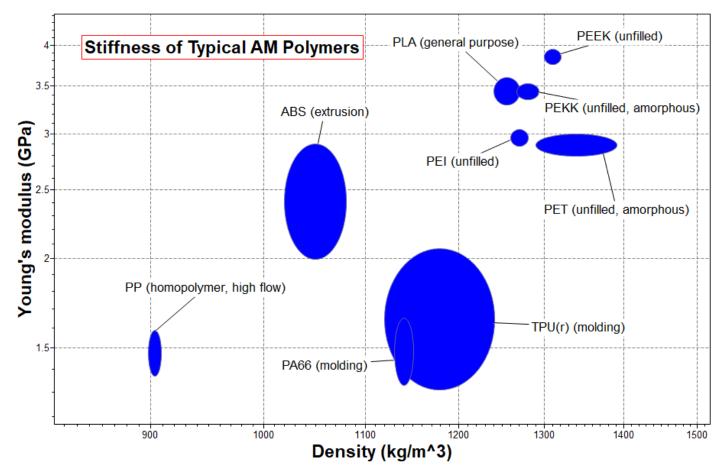
Quiz time – Which is of these AM Polymers is classified as a high-performance polymer due to greater mechanical and thermal properties?


Website – Vevox.app



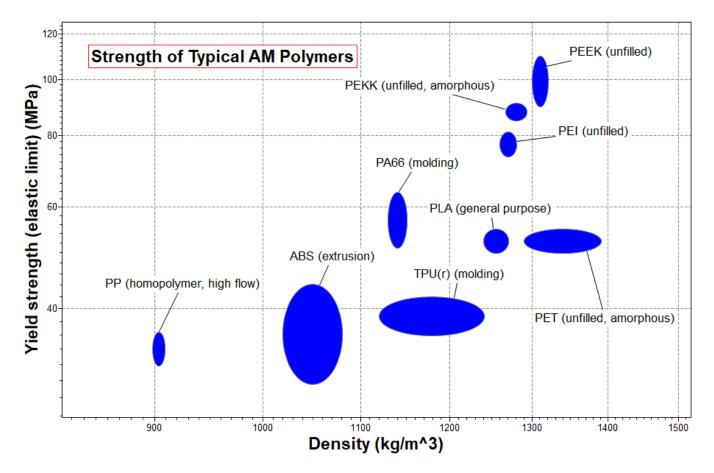
Adapted from 3D natives (2020) https://www.3dnatives.com/en/peek-3d-printing-060420204/

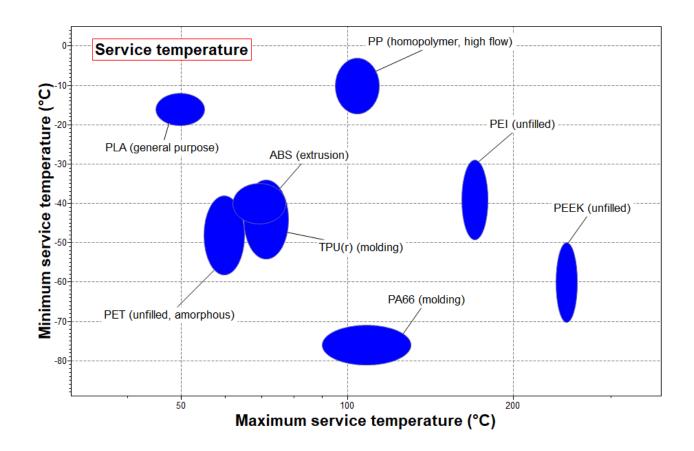
Thermal properties



MATERIALS

Mechanical properties




MATERIALS

Mechanical properties

Max and min service temperatures

Mechanical properties

Several factors affect the mechanical properties of additive manufactured

polymers:

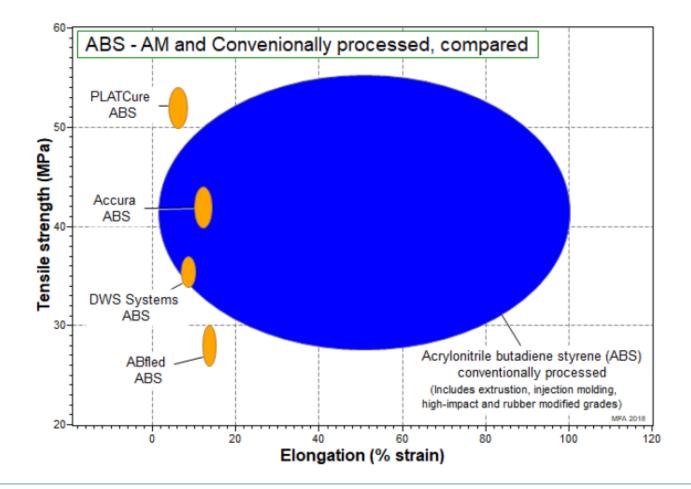
- Material Properties of the unprinted polymer
 - Several types
 - New or recycled
- ✓ AM Manufacturing Process
 - Several processes
 - Printing parameters (e.g., processing temperature, curing time)
 - ✤ AM equipment
 - Reinforcements and fillers to enhance the properties
- Post-processing techniques

Co-funded by the Erasmus+ Programme of the European Union

Mechanical properties

Additional notes

- ✓ Limitations of Material extrusion (i.e. FDM) include:
 - Mechanical anisotropy (~ 50%) can lead to weaker parts/products
 - Part-to-part variations



MATERIALS

Mechanical properties

Mechanical properties

Material	Process	Manufacturer	Tensile strength [MPa]	Tensile modulus [GPa]
ABS	SLA (Stereolithography)	3D systems	48	2.6
ABS	FDM (Material extrusion)	Stratasys	26	2.2

Data obtained from Kazmer, D., 2017. Three-dimensional printing of plastics. In Applied Plastics Engineering Handbook (pp. 617-634). William Andrew Publishing.

MATERIALS

Mechanical properties

Material	Process	Manufacturer	Tensile strength [MPa]	Tensile modulus [GPa]
Nylon	SLS (Powder bed fusion)	EOS	48	1.7
Nylon with glass beads	SLS (Powder bed fusion)	EOS	51	3.2
Nylon with aluminium (Alumide)	SLS (Powder bed fusion)	EOS	48	3.8
PEEK	SLS (Powder bed fusion)	EOS	90	4.2

Quiz time – Which of these factors can affect the mechanical and thermal properties of AM polymers?

Website – <u>Vevox.app</u>

Recap

- 1. List different polymers used in AM
- 2. Explain different AM processes used for polymer materials
- 3. Describe the properties (e.g., mechanical properties) of AM polymers
- 4. Explain the effect of processing and environmental conditions (e.g., temperature) of AM polymers

Co-funded by the Erasmus+ Programme of the European Union

Teaching Resources

- Lecture slides
- Recording
- Further Reading
 - 3Dnatives. 2020. 3D Printing Materials Guide: Plastics. [online] Available at: https://www.3dnatives.com/en/plastics-used-3d-printing110420174/ [Accessed 23 April 2021].
 - AMFG. 2019. 3D Printing with Polymers: All You Need to Know in 2021. [online] Available at: https://amfg.ai/2019/01/17/3d-printing-with-polymers-all-you-need-to-know/ [Accessed 23 April 2021].
 - Ashby, M.F., Jones, D.R. and Jones, D.R.H., 1994. An introduction to microstructures, processing and design. Pergamon Press.
 - Callister Jr, W.D. and Rethwisch, D.G., 2020. Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons.
 - Dizon, J.R.C., Espera Jr, A.H., Chen, Q. and Advincula, R.C., 2018. Mechanical characterization of 3Dprinted polymers. Additive Manufacturing, 20, pp.44-67..

Any Questions?

Coffee Break

We will continue at <u>11:10am BST</u>

Co-funded by the Erasmus+ Programme of the European Union

AM Polymer Applications

Wednesday 2nd June 2021

Co-funded by the Erasmus+ Programme of the European Union

Recap: AM Polymer Materials and Properties

Teaching structure

Week	Торіс	Lecturer
1A	Introduction to Polymer Materials in	AS and
Tuesday 1 st June 2021 2hr lecture (10am – 12pm BST)	AM – Examples and Properties	CF
1B Wednesday 2 nd June 2021 2hr lecture (10am – 12pm BST)	Polymer Materials in AM – Case Study	AS and CF
2A Monday 7 th June 2021 7-minute assessment (10am – 10:30am BST)	Assessment	AS
TBC (approximately a week after)	Assessment (Resit)	AS

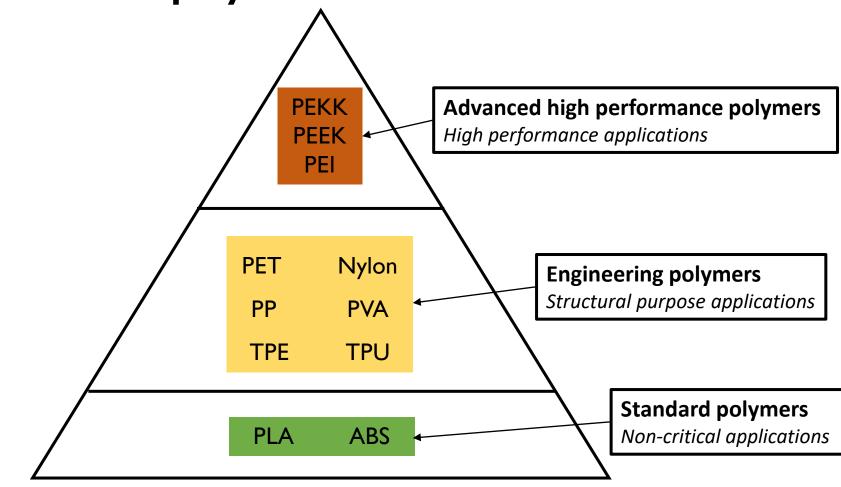
What we covered

- 1. An overview of AM, benefits, industry and applications across different sectors
- 2. Seven major AM processes and explanations
- 3. Polymers used in AM, benefits, and challenges
- 4. Properties of AM polymers
- 5. Factors affecting the properties of AM polymers

Seven AM processes by ISO/ASTM 52900:2015

Material extrusion	• Material is selectively dispensed through a nozzle
Material jetting	• Droplets of build material are selectively deposited
Binder jetting	• Liquid bonding agent is selectively deposited to join powder materials
Directed energy deposition	• Thermal energy (laser or electron beam) is used to fuse materials by melting as they are being deposited
Powder bed fusion	• Thermal energy (laser or electron beam) selectively fuses regions of a powder bed
Sheet lamination	• Sheets of material are bonded to form a part
Vat photopolymerization	• Liquid photopolymer in a vat is selectively cured by light-activated polymerization

<u>Underlined processes is typically used to make AM polymers</u>



Common polymers used in AM

Adapted from 3D natives (2020) https://www.3dnatives.com/en/peek-3d-printing-060420204/

Mechanical properties

Several factors affect the mechanical properties of additive manufactured

polymers:

- Material Properties of the unprinted polymer
 - Several types
 - New or recycled
- ✓ AM Manufacturing Process
 - Several processes
 - Printing parameters (e.g., processing temperature, curing time)
 - ✤ AM equipment
 - Reinforcements and fillers to enhance the properties
- Post-processing techniques

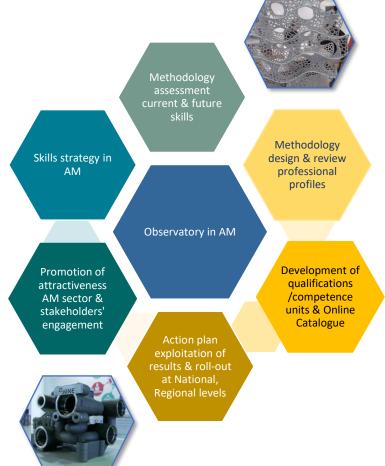
Co-funded by the Erasmus+ Programme of the European Union

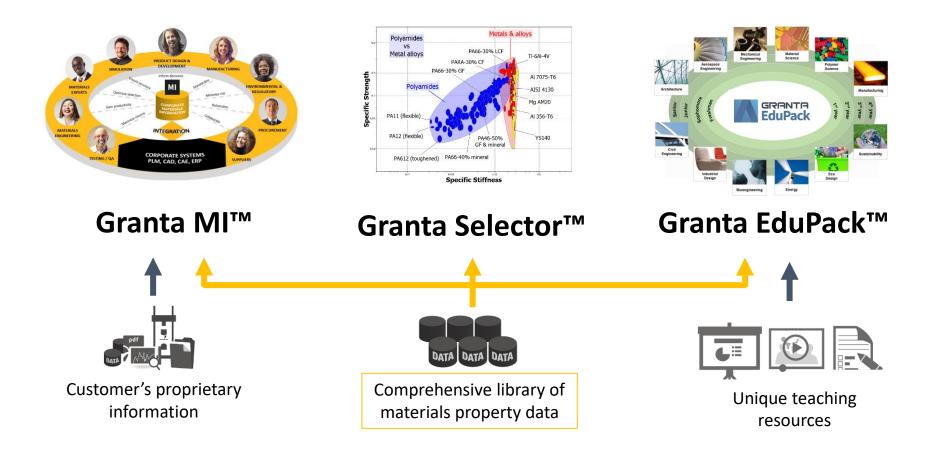
Day 2

Learning Outcomes day 2

- 1. List different polymers used in AM
- 2. Explain different AM processes used for polymer materials
- 3. Describe the properties (e.g., mechanical properties) of AM polymers
- 4. Explain the effect of processing and environmental conditions (e.g., temperature) on AM polymers
- 5. Identify different applications of AM polymers (e.g., Automotive, Aerospace, Biomedical etc.)

Let's get started




SAM project contributions from Ansys

- Development of teaching and training resources for Additive Manufacturing
- Run workshops, webinars and pilot training courses using Ansys Software for Education and Industry through outreach initiatives
- Further development of the AM modules such as interactive process descriptions, explanations and examples of process chain data types, etc
- Revise AM professional profiles
- Support project tasks and deliverables to
 - Identify and anticipate the right skills for the Additive Manufacturing (AM)
 - Develop a methodology for a sustainable and continuous assessment of current and future skills needed in AM
 - \circ Provide solutions capable of fostering and supporting the growth, innovation and competitiveness of the AM sector

Software-based materials information and tools

Agenda Polymer AM Applications

- From Rapid prototyping to industrial AM
- Polymer AM vs Metal and Ceramics AM
- Polymer Matrix Composite AM

Software – examples and case studies

- Are AM Polymers any good? Microproject 1
- Sustainability of polymer AM Microproject 3
- Granta Selector Senvol AM Database
- Online AM technology library
- Applications overview and discussions
- Exam details?

This project has been funded with support from the European Commission. This communication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

From Rapid prototyping to industrial AM

• Predicted in Science Fiction 1945:

"this constructor is both efficient and flexible. I feed magnetronic plastics — the stuff they make houses and ships of nowadays — into this moving arm. It makes drawings in the air following drawings it scans with photo-cells. But plastic comes out of the end of the drawing arm and hardens as it comes ... following drawings only"

Murray Leinster (William Fitzgerald Jenkins), in Things Pass By

• Patent US3596285A: Liquid Metal Recorder 1971:

"a continuous Inkjet **metal** material device to form a removable metal fabrication on a reusable surface for immediate use..."

Johannes F Gottwald

• Patent JP S56-144478: XYZ plotter 1981

"two additive methods for fabricating three-dimensional plastic models with photohardening thermoset **polymer**, where the UV exposure area is controlled by a mask pattern or a scanning fiber transmitter"

Hideo Kodama

From Rapid prototyping to industrial AM

• 1980's Innovation, Individual names

Stereolithography

Selective Laser Sintering (SLS)

Fused Deposition Modeling (FDM)

Thermoplastic Inkjet

• 1990's Commercialization, Rapid Prototyping

E.g., Selective laser melting (SLM)

• 2000 – today, Industrialization, Additive manufacturing

FDM patent expires 2009, 3D printing popularized

Polymer AM vs Metal AM

Polymer AM

Ambient Low cost equipment Filament, pellets Low energy Lower temperature Less slow

Metal AM (+ceramics)

Vacuum or inert gas Expensive equipment Wires, powders High energy, High temp Slow

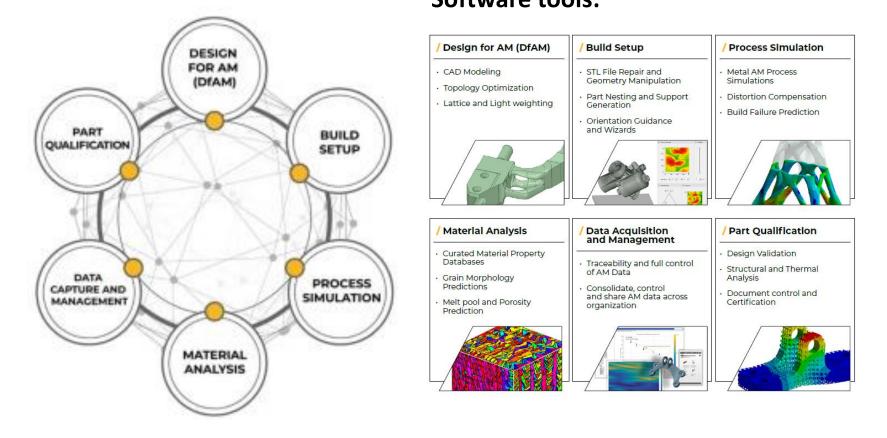
Both

Near netshape = low waste Customizable (CAD-based) Complex geometries

Polymer Matrix Composite AM

• Carbon fiber or glass fiber reinforced thermoplastic filaments

https://www.youtube.com/watch?v=_7cA23Orioo

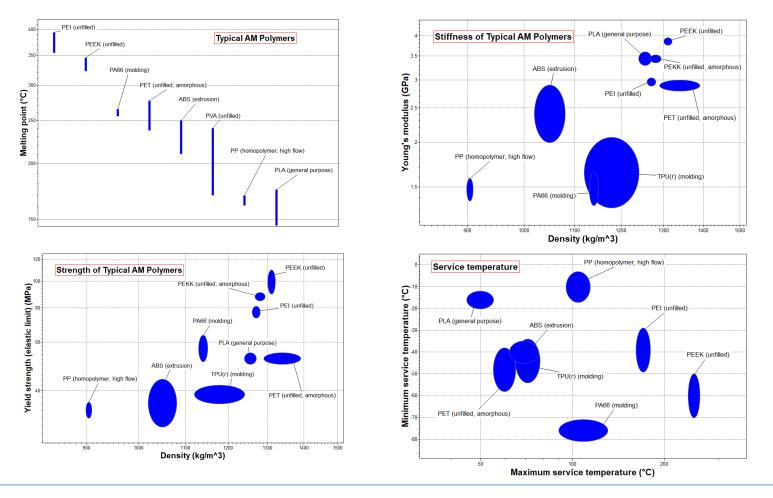


There are many things to consider in industrial AM applications:

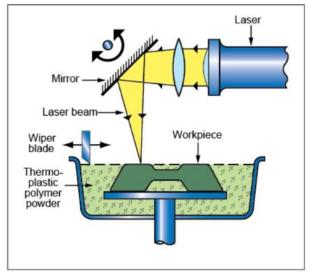
Additive manufacturing and Simulation

Why Ansys + Products & Services + Learn +	Ansys	Sear	ch All Ansys Q
Home > Events > How Ansys Simulation is Revolutionizing the Future of Additive / How Ansys Simulation	e Manufacturing	/ Register Now	
		First Name *	Last Name *
is Revolutionizing the Future of Additive Manufacturing Learn how Ansys simulation solutions are accelerating the adoption of additive manufacturing by enabling more effective design for additive manufacturing, dramatic decreases in failed builds and increases in machine productivity.		First Name	Last Name
		Company or School *	Are You a Student? *
		Company or School	Select 🔹
		Email Address *	Phone
		Email	(XXX)XXX-XXXX
		Country/Region *	City*
Time:		Select -	City
June 10, 2021 10 AM EDT / 3 PM BST / 7:30 PM IST		Postal Code *	Job Level
Venue: Online		Postal Code	Select -
Chine Share Share Share Share			s and other offers from Ansys and cribe at any time. Ansys Privacy

www.ansys.com/events/how-ansys-simulation-revolutionizing-future-additive-manufacturing



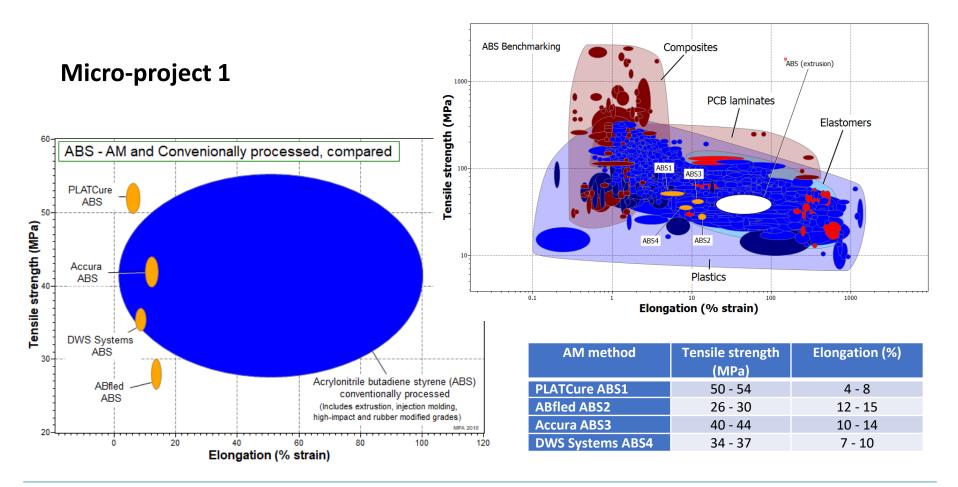
Software – examples and case studies



Are materials made by polymer AM any good?

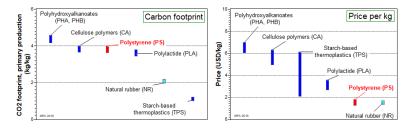
Additive Manufacture (AM) or 3D printing is seen as part of the ongoing "4th Industrial Revolution" (following the revolutions of steam, electricity and information technology). AM technologies use computer-controlled deposition to build shapes layer-by-layer. All can create shapes of great complexity without the need for dies or molds. But is the material made in this way as good as that made by conventional methods such as injection molding?

- Which polymers can be shaped by AM?
- Explore the properties of conventional • Acrylonitrile butadiene styrene (ABS), for which there is a record in the MS&E DB, by making a chart with Tensile Strength (MPa) on the y-axis and Elongation (%) on the x-axis



Selective Laser Sintering (polymers)

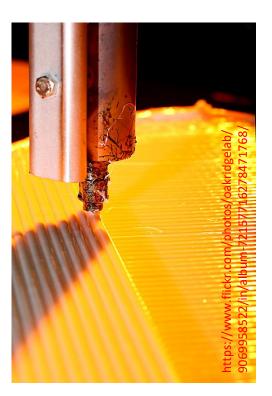
AM method	Tensile strength (MPa)	Elongation (%)
PLATCure ABS1	50 - 54	4 - 8
ABfled ABS2	26 - 30	12 - 15
Accura ABS3	40 - 44	10 - 14
DWS Systems ABS4	34 - 37	7 - 10


Are materials made by polymer AM any good?

Is PLA really greener than oil-based plastics?

Micro-project 2

- What is PLA? (Use the Search facility to find the record for PLA. You can copy text and images from the record. To do so, open the record, right-click and copy the entire record is copied then paste into WORD the whole record appears. Select and copy the bits you want to paste into a report.)
- What is PLA made from if it isn't oil? (Explore the record to find out.)
- What is PLA used for? (Explore the record to find out.)
- Are there other commercial biopolymers? (Use the Search facility to find records containing the word Biopolymer.)
- Plot CO2



Applications from Oak Ridge National Lab

Source: U.S. Department of Energy, Oak Ridge National Laboratory CC BY 2.0

Co-funded by the Erasmus+ Programme of the European Union

Applications in the future?

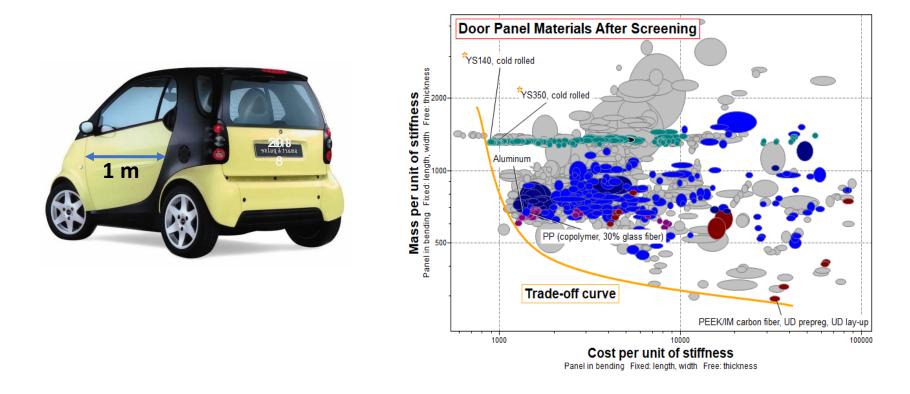
If supplied, you must provide the name of the creator and attribution parties, a copyright notice, a license notice. a disclaimer notice, and a link to material. CC licenses prior to uire you to provide

al if supplied, and light differences.

Source: U.S. Department of Energy, Oak Ridge National Laboratory CC BY 2.0

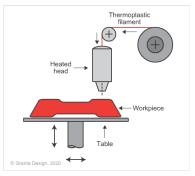
Large Scale Additive Manufacturing

Source: U.S. Department of Energy, Oak Ridge National Laboratory CC BY 2.0



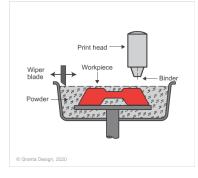
Reality check – the Senvol Database

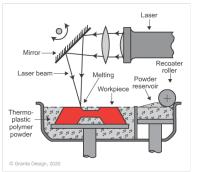
Q: Can automotive door panels be produced by additive manufacturing?

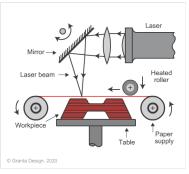


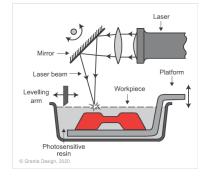

Additive Manufacturing Technologies for polymers

https://grantadesign.com/education/teachingresources/ongoing-development/additive-manufacturing/


Material extrusion


Material jetting


Binder jetting


Powder bed fusion

Sheet lamination

Vat photopolymerization

Questions on the library: Deposition methods

- 1.1 Why are this category called deposition methods?
- 1.2 Are there any disadvantage for complex geometries?
- 1.3 Can polymers as well as metals be used to build objects?
- 1.4 What is the difference between this category and 3D printing

This project has been funded with support from the European Commission. This communication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Questions on the library: Vat Photopolymerization

- 5.1 What type of materials are used for photolithography?
- 5.2 What kind of light is used to cure the resin?
- 5.3 How can build "overhangs" be achieved in this method?
- 5.4 How can light degradation of the final product be avoided,

Additive Manufacturing across different sectors

Construction

Source: m-tec (2020)

Food

Aerospace/Automotive

Source: AMFG.ai (2019)

Source: Pixabay (2020)

Health & Biomedical

Source: Fabbaloo (2018)

Source: 3D Printing Media Network (2020)

Source: Shutterstock (2020)

Any Questions?

Assessment

- Multiple choice questions
 - > 7 questions (Based on the lecture content, learning outcomes and learning resources)
- Assessment via Teams and Forms platforms
 - Camera will need to be turned on
 - Duration 7 minutes total (approx. 1 min per question) (*Forms records the duration for each participant*)
 - External invigilator on the day from the lead partner EWF
 - Results (within one week of the assessment)
 - Score at least 60% to pass (to receive SAM's certificate)
 - If lower, you get another opportunity with another new assessment (new date TBC)
 - SAM Certificate to be issued within 1 month.